Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Faculty Publications
  3. Journal Articles
  4. Synthesis and Characterization of PVDF/Graphene Nanocomposite Membrane for Water Treatment Applications
 
  • Details

Synthesis and Characterization of PVDF/Graphene Nanocomposite Membrane for Water Treatment Applications

Date Issued
2022-06
Author(s)
Rao, Srilatha
Lakshmikanthan, Avinash
Sowmyashree, A S
Hegde, Chitrakara  
lsloor, Arun M
Malik, Vinayak
DOI
1662-9795
Abstract
Membrane technology advancement has gained momentous consideration around the globe because of their appealing highlights, such as effectiveness, low expenses, and effective solutions for longstanding issues in alchemical industries. This study expected to incorporate graphene nanoparticles into Polyvinylidene difluoride (PVDF) to form nanofiltration (NF) layers using DMF (Dimethyl formamide) as solvent via DIPS (diffusion induced phase separation) technique. PVDF polymer membrane performances with varied percent (1 – 6% wt.) of graphene concentrations are studied Infrared spectral, water uptake, water contact angle, and ion rejection measurements. Scanning electron microscope (SEM) analysis showed that the pore size is often regulated by incorporating graphene nanoparticles (80-90 nm) as compared to PVDF membranes. The PVDF membranes exhibited a relative increase in the contact angle from PVDF to PVDF-G6% i.e. 50.3° to 63.46 ± .3, thus, showing a relative increase in hydrophobicity. The higher percent of graphene (> 6% by wt.) results in nanoparticle accumulation that showed the performances of PVDF/graphene rejection possessing relatively the same results. The results confirmed that the prepared membranes possess an excellent ability to treat wastewater.
Subjects

Desalination

Graphene

Membrane

Polymer

Water Purification

Powered by - Informatics Publishing Ltd