Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Faculty Publications
  3. Journal Articles
  4. Microneedle (Mn)-Based Sensing Technology: an Innovative Solution for Agriculture
 
  • Details

Microneedle (Mn)-Based Sensing Technology: an Innovative Solution for Agriculture

Date Issued
2024
Author(s)
Kumari, Sonu
Talreja, Neetu  
Chauhan, Divya
Ashfaq, Mohammad
DOI
https://doi.org/10.1039/d4ma00479e
Abstract
Agricultural health is one of the most important aspects of improving crop productivity, which can significantly decrease the demand for food. Plant diseases and nutritional value are among the crucial factors affecting food safety and quality, subsequently reducing the yield of the crops and increasing plant mortality. Therefore, continuous monitoring of plant health is of utmost importance to enhance the yield of crops. In this aspect, microneedle (MN)-based sensing technology is potentially able to monitor agricultural health. Borrowing a page from medicine, minimally invasive MNs have been effectively used to deliver drugs and biomolecules within the human body without any pain or tissue damage. Usually, MNs have been divided by researchers into four groups: solid microneedles (S-MNs), hollow microneedles (H-MNs), dissolving microneedles (D-MNs), and coated microneedles (C-MNs), which are effectively used according to requirements of delivery of biomolecules and sensing applications. The MN-based probe is directly attached to the relevant part of the plant tissue, thereby bypassing the cuticles. Interestingly, MN-based sensing technology offers newer insight into agriculture health by continuously monitoring plant health, including nutritional values and pathogens. This article opens newer avenues and provides knowledge about the fabrication of MN-based sensing technology for plant health that might benefit the food and agricultural industry. © 2024 RSC.
Subjects

Crops

Needles

Agricultural Health

Crop Productivity

Food Quality

Food-Safety

File(s)
Loading...
Thumbnail Image
Name

d4ma00479e.pdf

Size

1.41 MB

Format

Adobe PDF

Checksum

(MD5):015486a2e734774e94e6a055345b8b68

Powered by - Informatics Publishing Ltd