Hand Sign Recognition using YOLOV5
Date Issued
2022-01
Author(s)
DOI
2395-5295
2395-5287
Abstract
The deaf-mute community utilises sign language for interacting among themselves and others. The introduction of standard sign language has made their lives much easier. This paper proposes an effective hand-sign recognition method using a deep learning technique and is based on YOLOv5, which is a real-time object detection algorithm which detects a hand sign and outputs the corresponding text. The proposed model utilises various sub-models namely, Cross Stage Partial Network (CSPNet), Path Aggregation Network (PANet), Dense Prediction. This model can be conveniently deployed into an android application with a user-friendly interface.