Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Faculty Publications
  3. Journal Articles
  4. Genome-Wide Identification and Characterisation of Aquaporins in Rosa Chinensis
 
  • Details

Genome-Wide Identification and Characterisation of Aquaporins in Rosa Chinensis

Date Issued
26-10-2023
Author(s)
Mandlik, Rushil
Sharma, Shivani
Rout, Priyadarshini
Singh, Shweta
Raturi, Gaurav
Rana, Nitika
Sonah, Humira
Deshmukh, Rupesh
Shivaraj, S M
Nanda, Satyabrata
Kawar, Prashant G
DOI
14620316
Abstract
Aquaporins (AQPs) are small integral membrane proteins that facilitate the efficient transport of small solutes like water, metalloids, urea, and CO2 across the membrane. Plant aquaporins are known to be involved in vital physiological processes like seed germination, stomatal movement, cell elongation, and reproductive growth. In the present study, 36 AQPs were identified through genome-wide computational analysis performed in the rose genome. Subsequent phylogenetic analysis classified the AQPs into five subfamilies, including 10 Plasma membrane intrinsic proteins (PIPs), 8 Tonoplast intrinsic proteins (TIPs), 9 Nodulin intrinsic proteins (NIPs), 3 Small intrinsic proteins (SIPs), and 6 uncharacterised intrinsic proteins (XIPs). Based on the prediction of silicon solute specificity, one of the NIPs is predicted to be a silicon transporter. Structural analysis revealed the characteristic six trans-membrane domains and two-half alpha helix harbouring two conserved NPA motifs in the majority of the predicted AQPs. The protein tertiary structures predicted with homology-based modelling were used to study the pore lining remains and to predict the solute transport activity of the AQPs. Expression profiling of the rose AQPs showed tissue-specific expression of many members. The data provided here will help in understanding the AQP-based solute transport system in roses and other related species.
Subjects

Aquaporins

Rosaceae

Rose

Solute specificity

Silicon

Powered by - Informatics Publishing Ltd